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ABSTRACT 
 

Strained semiconductor thin films grown epitaxially on semiconductor substrates of 
different composition, such as Si1-xGex/Si, are becoming increasingly important in modern 
microelectronic technologies.  In this paper, we report a hierarchical computational approach for 
analysis of dislocation formation, glide motion, multiplication, and annihilation in Si1-xGex 
epitaxial thin films on Si substrates.  Specifically, a condition is developed for determining the 
critical film thickness with respect to misfit dislocation generation as a function of overall film 
composition, film compositional grading, and (compliant) substrate thickness.  In addition, the 
kinetics of strain relaxation in the epitaxial film during growth or thermal annealing (including 
post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field 
theoretical model, which describes plastic deformation dynamics due to threading dislocation 
propagation.  The theoretical results for Si1-xGex epitaxial thin films grown on Si (100) substrates 
are compared with experimental measurements and are used to discuss film growth and thermal 
processing protocols toward optimizing the mechanical response of the epitaxial film. 
 
INTRODUCTION 
 

Strained Si devices on Si1-xGex virtual substrates enhance electron and hole mobility 
compared to unstrained substrates of the same material [1]. When an alloyed Si1-xGex layer is 
grown on a Si substrate, biaxial strain develops due to lattice mismatch between the substrate and 
the grown film.  Possible mechanisms of strain relaxation include misfit dislocation generation at 
the film/substrate interface [2] beyond a critical film thickness, as well as film surface 
morphological transitions [3].  In practice, large numbers of threading dislocations are nucleated 
which, after gliding a short distance, become immobilized, resulting in a high dislocation density 
in the film.  Device-quality materials, however, need to have a high degree of strain relaxation, 
low threading dislocation densities, and smooth surfaces.  Recently, it has been reported that He 
ion implantation and subsequent annealing at temperatures (T) over the range 1023 K ≤ T ≤ 1123 
K can result in thin Si1-xGex layers possessing a high degree of strain relaxation, as well as 
relatively low densities of threading dislocations [4]. 

In this paper, we report a hierarchical approach for computational analysis of the 
mechanical response of Si1-xGex films on Si substrates.  We use continuum elasticity and 
dislocation theory to study the critical thickness of Si1-xGex films as a function of the alloy 
composition in an Si1-xGex/Si(100) heteroepitaxial system. Subsequently, we employ a 
phenomenological model to examine the kinetics of strain relaxation during thermal annealing 
that follows a typical ion implantation process used for the post-growth treatment of 



heteroepitaxial films. Finally, we examine the role of atomistic simulations in parameterizing 
consistently the continuum models for critical film thickness calculation and strain relaxation 
kinetic analysis. 

 
HIERARCHICAL COMPUTATIONAL APPROACH 
  
       Our study focuses on theoretical analysis 
of the deformation mechanics, interfacial 
stability, strain relaxation kinetics, and 
surface morphology of strained-layer Si1-

xGex/Si heteroepitaxial systems. Toward this 
end, we have developed a hierarchical 
approach combining continuum elasticity and 
dislocation theory with atomistic simulations 
of structural and compositional relaxation, 
within a reliable empirical description of 
interatomic interactions. Special emphasis is 
placed on the case of heteroepitaxial growth 
on compliant substrates of finite thickness. 
The analysis aims at rigorous 
parameterization of continuum theoretical 
models for the mechanical response of 
strained-layer heteroepitaxial systems. A 
diagrammatic outline of our hierarchical 
computational approach is given in figure 1. 

 
 
Figure 1.  Diagrammatic outline of hierarchical 
computational approach to study mechanical 
response of strained-layer heteroepitaxial systems. 

 
CALCULATION OF CRITICAL FILM THICKNESS 
 

First, we consider the case where the epitaxial film of thickness hf and the substrate of 
(generally finite) thickness hs are coherently elastically strained. Taking the equilibrium lattice 
parameter of the film to be less than that of the substrate, the lattice mismatch results in 
compressive strain, εf, for the film, and tensile strain, εs, for the substrate. Assuming uniform 
deformation, εxx,i  = εyy,i = εi  and σxx,i = σyy,i = Miεi, where i = f, s, and, Mf  and Ms are the 
corresponding biaxial moduli defined as M ≡ 2µ(1+ν)/(1-ν), where µ and ν are the shear 
modulus and Poisson’s ratio, respectively.  The condition of zero net force on any atomic plane 
perpendicular to the interface requires that σfhf + σshs = 0, which yields Msεshs +  Mfεfhf  = 0.  In 
addition, the compatibility condition for perfect interfacial coherence requires εf  - εs = εm, where 
εm is the mismatch strain in the film in the limit hs → ∞. Solving the mechanical equilibrium and 
compatibility conditions for the elastic strain in the absence of dislocations, we obtain εf = 
εm/[1+Λ(hf /hs)] and εs = -εmΛ(hf /hs)/[1+Λ(hf /hs)], where Λ ≡ Mf /Ms, is the ratio of the moduli of 
the film and the substrate. 

Next, we consider a dislocation with Burgers vector {bx, by, bz} that is introduced within 
the substrate directed at the film/substrate interface.  The work of the stress done on the 
dislocation can be expressed as W1=Ms εs hs bx and the self-energy of dislocation, W2, according 
to Ref. [5].  The critical condition for the introduction of a misfit dislocation at the interface 
requires that W1 + W2 = 0, which yields 
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an equation that can be solved for the critical film thickness, hf,c.  The work of stress in the film 
done on the dislocation is W = Mfεfhfbx – W2, which can be rewritten as W = τeff hfbx to define the 
effective stress, τeff, on the dislocation.  The resulting expression for the effective stress is 
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 The above analysis is a simple extension of the Freund & Nix theory for compliant-
substrate heteroepitaxial systems [5], which yields the well-known Matthews-Blakeslee result [6] 
for infinitely thick substrates.  Figure 2 shows the results of the analysis for the dependence on 
the substrate thickness of the critical thickness of Si1-xGex films on Si substrates for various film 
compositions, x.  The results of figure 2 were obtained by solving the nonlinear algebraic 
equation for hf,c, Eq. (1), numerically for given hs and x and carrying out a parametric study over 
a broad range of hs and x.  The beneficial effects of using thin compliant substrates are evident in 
figure 2, considering the critical film thickness as a typical metric for strain relaxation.  To 
generate the results of figure 2, we have assumed, as a first approximation, that the film 
properties (lattice parameter and elastic moduli) vary linearly with the Ge composition, 
analogous to Vegard’s law.  A more rigorous dependence of the film properties on the Ge 
composition can be obtained using atomistic simulations (as described below) for coherently 
strained systems. 
 
 
        
 
 
 
 
 
 
 
 
 
MODELING OF STRAIN RELAXATION KINETICS 
 

To study the strain relaxation kinetics after the onset of dislocation generation, we have 
adopted a variant of the phenomenological model proposed by Alexander and Haasen to describe 
plastic deformation dynamics in semiconductor crystals [7,8].  In our formulation, the speed of a 
gliding dislocation, V(t), is given by  
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Figure 2. Dependence of the 
critical film thickness, hf,c,  on the 
substrate thickness, hs, and the 
film composition, x, for 
heteroepitaxial Si1-xGex/Si(100) 
systems. 



where V0 is a mobility pre-exponential factor, τeff  is the effective stress, Qv is the Peierls 
activation barrier [9], kB is the Boltzmann’s  constant, T is temperature, and the exponent m = 2 
for Si1-xGex/Si [7]. The rate of dislocation generation is given by 
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where B and n are material constants, N is the dislocation density, and Qn is the activation barrier 
for dislocation nucleation.  The strain relaxation rate in the film is given by Orowan’s equation  

( )
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ε
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The effective stress appearing in Eqs. (3) and (4) is reduced further from the expression of 
Eq. (2) by subtracting the term αµfbN1/2 to take dislocation-dislocation interactions into account; 
α is a case-dependent numerical constant that can be used as a fitting/adjustable parameter and b 
is the magnitude of the Burgers vector.  In addition, we assume that the deformation remains 
biaxial as strain relaxation occurs through dislocation formation. The validity of this assumption 
depends on the surface orientation and is guaranteed for Si1-xGex/Si(100).  Finally, in simulating 
growth experiments we take dhf/dt = Vg, where Vg is the growth velocity and is assumed to be 
constant. 

 

 

 

 

 

 

 

 
 

Figure 3.  Strain relaxation as a function of film thickness for Si0.80Ge0.20/Si(100) 
samples annealed after epitaxial growth unimplanted (a) or after He ion implantation (b).  
The solid curves correspond to the modeling results, while the discrete points correspond 
to experimental data; different symbols correspond to different experimental conditions 
[from Ref. 4]. 
 
We have integrated Eqs. (3)-(5) to model the thermal annealing experiments reported by 

Cai, et al [4], where Si0.80Ge0.20/Si(100) samples were annealed after epitaxial growth either 
unimplanted or following post-growth He ion implantation.  For quantitative predictions, we 
have used dislocation parameters from the literature [7] and taken the experimental conditions 
carefully into account.  During growth, we have used the elastic equations discussed above to 
model the deformation mechanics for film thicknesses less than critical.  Adjusting the parameter 
α, we maintained a low dislocation density at the end of the growth process (N < 103 cm-2).  For 
modeling the annealing of unimplanted samples, the initial values of the dislocation density and 
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film strain were taken equal to the corresponding final values from the kinetic modeling of 
epitaxial growth.  Ion implantation causes substantial dislocation nucleation; therefore, for 
modeling the annealing of the He implanted samples, we used initial values for the dislocation 
density higher by orders of magnitude than those obtained from the kinetic modeling of growth.   

The modeling results and comparisons with the experimental data are shown in figure 3 
for annealing of unimplanted samples, figure 3(a), and annealing after sample implantation with 
He ions, figure 3(b).  The agreement of the modeling results with the experimental data is good 
and comparable to the agreement reported between the data and state-of-the-art discrete 
dislocation-dynamics simulations for the case of post-implantation annealing [10].  
 
ATOMIC–SCALE ANALYSIS 
 

Atomic-scale simulations based on accurate many-body interatomic potentials can be used 
to carry out detailed structural and compositional relaxation and calculate the energy and strain 
in the relaxed state of epitaxially grown films on thin or thick substrates.  These calculations can 
be used to parameterize phenomenological models of mechanical behavior, which can then be 
used to evaluate compositional grading schemes in order to grow higher-quality films.  The key 
ingredient of our atomistic simulation procedure is a variant of the Monte Carlo (MC) method 
originally suggested by Foiles [11,12].  The MC simulation is preceded and followed by energy 
minimization based on a conjugate-gradient (CG) scheme to account for local structural 
relaxations.  In Si1-xGex systems, the combined MC/CG approach minimizes the system energy 
by distributing the Si and Ge atoms and relaxing the atomic coordinates after the compositional 
distribution; therefore, it generates the equilibrium configurations resulting from solute 
segregation at lattice defects, surfaces, and interfaces.  Our MC method employs a three-step 
sequence: (i) one “compositional” MC sweep over all Ge atoms, where each MC step consists of 
a trial to exchange a Ge atom with a randomly chosen Si atom (chemical identity switching); (ii) 
many (typically 50) MC sweeps over all atoms, where each MC step consists of a continuous-
space atomic displacement trial for “structural” relaxation; and (iii) one MC step for cell-size 
(“strain”) relaxation, consisting of a trial to adjust the cell dimensions in the principal directions 
normal to the film’s free surface.  In all three steps, trials are accepted or rejected according to 
the Metropolis criterion. 

We have implemented the above atomistic simulation method to model the relaxation of 
a prototypical system, consisting of a Si0.50Ge0.50 slab with (100) free surfaces.  The interatomic 
interactions were described according to Tersoff’s many-body potential [13].  The results are 
shown in figure 4 for the evolution of the system energy during relaxation (inset to figure 4(a)), 
the equilibrated Ge distribution in the slab (figure 4(a)), and the final relaxed atomic 
configuration (figure 4(b)).  The results of figure 4 demonstrate the capabilities of the method to 
capture the Ge segregation at the slab’s surfaces. 
 
SUMMARY AND CONCLUSIONS 
  

We have analyzed the energetics of dislocation formation and the strain relaxation 
kinetics in Si1-xGex epitaxial films grown layer-by-layer on Si(100) substrates.  The critical film 
thickness for the onset of misfit dislocation formation has been calculated as a function of the 
substrate thickness and the film composition. A phenomenological models that describes 
dislocation kinetics during growth and annealing also has been discussed and used successfully 



 
 
 
 
 
 
 
 
 
 
 
Figure 4.  (a) Ge distribution in relaxed configuration of Si0.50Ge0.50(100) slab starting from a 
random distribution of Ge atoms.  The inset gives the slab energy evolution during relaxation. 
(b) Atomic configuration representative of the slab’s equilibrated state.  Gold and silver spheres 
denote Ge and Si atoms, respectively. 
 
to interpret experimental data for strain relaxation in Si0.80Ge0.20/Si(100) systems. Finally, an 
atomic-scale method for modeling structural and compositional relaxation in Si1-xGex/Si systems 
toward parameterizing coarse-grained mechanical-behavior models has been presented and 
demonstrated through a prototypical system consisting of a Si0.50Ge0.50 slab with (100) free 
surfaces; the atomistic simulation has captured the Ge segregation at the slab surfaces. 
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